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try of 8,y-epoxy ketones.2~7 We now wish to suggest a gen-
eral scheme which summarizes the photochemistry of 8,y-
epoxy cyclic ketones and to present experimental evidence
which supports this scheme.8?

We propose that irradiation of a 8,y-epoxy cyclic ketone
(1) (Scheme 1) initially leads to Norrish type I bond cleav-
age and the formation of an apparent diradical species 2
which undergoes subsequent ring opening to give the acylal-
koxy diradical 3. Unless specific substituent and/or skeletal
constraints are present, product formation proceeds from 3
by competitive ring closure to give lactone 4 and hydrogen
transfer to provide aldehyde 5. If the formation of either 4
or § is prevented, then the other product predominates. If
the formation of both 4 and 5 is precluded, then decarbon-
ylation occurs to give diradical 6 which undergoes dispro-
portionation to provide 7 and/or ring closure to afford 8.

B,v-Epoxy cyclic ketones 9, 12, and 15 possess no unusu-
al molecular constraints (relative to Scheme I) and thus the
photochemistry of these compounds should be typical of the
“normal” photochemical behavior of 3,y-epoxy cyclic ke-
tones. Previously, we have noted that irradiation of 9
through a Corex filter with a Hanovia L 450-W lamp to
95% conversion gives 10 and 11 in yields of ca. 50 and 20%,

o) 0 0 H
hv k/
0 e °
9 H 1

10

respectively.” Expanding the size of the ketone ring does not
significantly affect the overall photochemical result. Thus,
irradiation of 121012 ynder comparable conditions affords
13 and 14 in yields of ca. 65 and 10%, respectively. Even

0 0
0 0
TR +
_ " !
O H oY
12 14
13

more drastic changes in the geometric relationship of the
carbonyl and epoxide moieties leads to analogous results.
Carlson and his coworkers have shown? that irradiation of
15 to 70% conversion gives in ca. 50% yield a 65:25:8 mix-
ture of 16:17:18.13

The consequences of preventing either 3 — 4 0r 3 — 5§
from occurring have been investigated. If the hydrogen at
the vy-carbon in the §8,y-epoxy ketone moiety of 1 is re-
placed by an alkyl substituent, then the formation of alde-
hyde 5 is precluded. In order to explore the ramifications of
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17
16 18
this constraint, we have examined the photochemistry of
19.'% Irradiation of an ether solution of epoxy ketone 19
through a Corex filter gives lactone 20 as the only major
reaction product in ca. 35% yield.!® By the introduction of

0

19
20

suitable geometric constraints in 1, it is possible to prohibit
3 — 5. Such is the case in 3,y-epoxy cyclic ketone 21.16 Ir-
radiation of an ether solution of 21 through a Corex filter
gives aldehyde 22 as the only major reaction product in ca.
50% yield. If the photorearrangement of 21 proceeds by the
mechanism outlined in Scheme I, then product formation
occurs from diradical 23. Of course, lactone formation from
23 is disfavored by the geometric relationship of the acyl
and alkoxy radicals.

0
O i H O
—_—
2

H

2

l
HH 0
21
HH (8] H

The consequences of preventing both 3 — 4 and 3 — §
from occurring are reflected in the photochemistry of 24
and 26. Irradiation of 24 leads to photodecarbonylation and
the formation of epoxide 25 in ca. 95% yield.® Similarly, ir-
radiation of 26 gives 27 in ca. 75% yield.® Chambers and

0
@fﬁ
hv
—_—
R )
24, R = CH,
26, R=H 25, R = CH,
27 R=H

Marples have reported that irradiation of an ether solution
of 9a,10a-epoxy ketone 28 also results in rapid decarbon-
ylation and formation of the unsaturated epoxide 29 (20%
yield), the B-norepoxide 30 (3%), and several minor prod-
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ucts.* By contrast, the 93,108-epoxy ketone 31 remains un-
changed when irradiated under comparable conditions.* In
view of Scheme I, an examination of molecular models
suggests that it would appear to be more likely that epoxy
ketone 31 rather than 28 would undergo photodecarbonyla-
tion. This point is currently under active investigation.
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Nuclear Magnetic Resonance Studies. III.
Carbon Nuclear Magnetic Resonance of
Triphenylphosphonium Ylides

Sir:

We wish to report the preliminary results of a 3C NMR
study of several alkylidene triphenylphosphoranes, tri-
phenylphosphinimines, triphenylphosphazenes, and their
corresponding phosphonium salts. Stabilized ylides contain
a strong electron withdrawing group adjacent to the carbon
bearing the formal negative charge. The 13C NMR of sev-
eral stabilized ylides! and only one nonstabilized ylide,
methylenetrimethylphosphorane,? have been reported pre-
viously. There has been no carbon NMR study of phos-
phinimines or phosphazenes, which contain formal P=N
bonds. Utilization of the '3C chemical shift and P-13C cou-
pling data can provide sensitive tests for models which pro-
pose? d orbital participation in these compounds. Contribu-
tion from the following resonance structures are considered
in this study.

“+ —_
Ph,P—CH, <« Ph,P—CH,

3a 3b
. -
Ph3P=N—© — PhaP—N—Q —
7a 7b
R
N
Ph;;P—Na-

5_.
7c
+ -
Ph,P=N—N=CH, <— Ph,P—N—N=CH, <—
9a 9b

+ -
Ph,P—N=N—CH,
9c

Bart® has determined by means of the X-ray structure of
methylenetriphenylphosphorane, that the methylene carbon
is trigonally hybridized. In addition, other X-ray studies*-¢
indicate a shortened ylide bond in nonstabilized ylides.
These studies have suggested a bonding picture in which
there is some transfer of electronic charge from carbon to
phosphorus presumably via d orbitals.” We recognize that
the amount of dm-p#x overlap may be relatively small be-
tween phosphorus and carbon.

Due to the rather limited NMR studies dealing with car-
bon involved in dz-pwr bonding with second-row elements,
we wish to examine the above effects of such interactions on
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